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Trapped vortices and a favourable
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It is shown that there exist bodies such that in two-dimensional steady inviscid
incompressible flow the pressure gradient is favourable over the entire surface of the
body, and the lift is non-zero, if the body is immersed in a uniform stream and there
are also two trapped point vortices.

1. Introduction
In flows of practical importance, the Reynolds number is often fairly large. With

Reynolds number being the ratio of inertial and viscous forces, this means that
viscosity effects can sometimes be neglected. The theory of inviscid flows is
substantially simpler than the theory of viscous flows. Many useful results have
been obtained within the inviscid flow theory, the most noteworthy of which is
probably the theory of lift.

A major limitation on the use of inviscid flow theory is imposed by separation.
Separation is a predominantly viscous phenomenon. In non-separated flows, viscosity
effects are confined to thin boundary layers adjacent to the walls. In separated flows
these thin layers protrude into the flow. Even in this case they can be modelled as
vortex sheets within the inviscid flow theory. However, inviscid models of separated
flow possess an intrinsic non-uniqueness when separation occurs from a smooth wall.
In an ideal fluid flow, the position of the separation point can be prescribed arbitrarily
within certain limits, while in a real flow it is determined by viscous effects. If the flow
is assumed to be two-dimensional and steady then there is an additional source of
non-uniqueness of the inviscid separated flow models. In a non-separated steady flow,
all the streamlines come from infinity. The vorticity is constant along the streamlines
and its distribution across the streamlines can be determined from the boundary
conditions at infinity. In steady separated flows, streamlines form closed contours in
the eddy. Therefore, the vorticity on closed streamlines cannot be determined from
the boundary conditions. Instead, the distribution of vorticity is governed by viscous
effects, however small they are, as demonstrated by the Prandtl–Batchelor theorem,
see Batchelor (1956). In addition to the difficulties of the theoretical description of
separated flows, separation of the flow past a wing leads to an increase in drag and
often to a decrease in lift. For these reasons, separation is avoided in airfoil shape
design.

Exact criteria of separation are difficult to obtain. In the case of a laminar flow, it
is possible to calculate a boundary layer and thus at least check whether separation
occurs for a given inviscid velocity distribution along the body surface. In the more
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practically important case of a turbulent boundary layer, such calculations can only
be approximate. On the other hand, both the boundary layer theory and practical
observations show that a boundary layer never separates when the pressure does not
increase in the direction of the flow. For this reason a negative pressure gradient is
called favourable. Therefore, in order to avoid separation, it is sufficient to ensure
that the pressure gradient is favourable or zero over the entire body surface. A flat
plate aligned with the flow direction is an example of such a body. However, it does
not create lift and it has zero volume.

Designing a body shape with a favourable pressure gradient over the entire surface
is of substantial practical and theoretical interest. At a first glance, the airfoil theory
inverse problem methods (Lighthill 1945; Elizarov, Il’inskiy & Potashev 1997) would
seem to be suitable to achieve this goal. The inverse problem is that of determining
the airfoil shape for a given velocity distribution on its surface. The major feature
of the inverse problem is that, if the velocity distribution is prescribed arbitrarily, the
resulting airfoil contour is not closed, and the corresponding potential flow occurs
on a multivalent Riemann surface. The additional constraint of the airfoil contour
being closed can be satisfied if a three-parameter family of velocity distributions is
given so that the solution to the inverse problem determines both the airfoil shape
and the values of the parameters that correspond to that shape. It is possible to
prescribe a family that only consists of velocity distributions with favourable pressure
gradients, and the corresponding closed airfoil contour can be obtained. However, in
all attempts the resulting airfoil contours are self-intersecting, even though the overlap
of the upper and lower surfaces of the airfoil can be small. This is a general result:
according to the Stepanov theorem, see Avhadief & Maklakov (1995), a potential
flow past a body necessarily creates an unfavourable pressure gradient on at least one
portion of the body surface.

Under certain circumstances, separation can be acceptable and even useful. An
example of this is airfoils with trapped vortices. The idea of such an airfoil is to
ensure, in some way, that the separated vortex remains permanently in the vicinity
of the airfoil and is not shed downstream and replaced periodically (or chaotically)
with a new vortex. High drag and low lift, usually observed at a high angle of attack,
are in fact due to this periodic or chaotic vortex shedding but not to the separation
itself. Vortex-trapping airfoils have been studied both theoretically and in experiments
for a long time, mainly as a means of enhancing lift and preventing or controlling
separation (see Saffman & Sheffield 1977; Rossow 1978; Huang & Chow 1982; Wu &
Wu 1992; Bunyakin, Chernyshenko & Stepanov 1998 where further references can be
found; Baranov et al. 2000). Vortex control is dealt with in Chernyshenko (1995), Wu
et al. (1998) and Iollo & Zannetti (2000). It is important to note that a favourable
pressure gradient at rigid boundaries is also desirable for flows with trapped vortices.
In this case an adverse pressure gradient can lead to secondary separation, resulting
in an increased number of eddies, and flows with multiple eddies are more difficult
to calculate and more likely to be unstable. It was shown in Bunyakin et al. (1998)
however that, for a wide class of eddy shapes, the pressure distribution has at least
two maxima and two minima on the eddy boundary, thus making it unlikely that
airfoils with one trapped vortex can have a favourable pressure gradient over the
entire rigid surface.

More details will be given on this at the end of the paper. In § 2 we extend the
Stepanov theorem to airfoils with unbounded curvature and formulate certain specific
results concerning the behaviour of the solutions near the trailing edge at which the
velocity maximum is attained. Section 3, which is very short, is devoted to airfoils
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with a single trapped vortex. Section 4 contains the main result of the present paper:
an example of a lifting body with two trapped point vortices and with a favourable
pressure gradient over the entire rigid surface. The concluding discussion section gives
a concise formulation of the newly obtained results and highlights the yet unsolved
problems which could be of interest in view of these results. The flow is considered
to be ideal two-dimensional, steady, and incompressible throughout the paper, with
real flow effects only mentioned in the introduction and discussion sections.

2. Stepanov theorem
2.1. Airfoils with unbounded curvature

The incompressible potential flow past a single airfoil in complex z-plane, z = x + iy,
is considered. The Stepanov theorem (Elizarov et al. 1997) states that a favourable
pressure distribution over the entire airfoil surface is impossible. This theorem has
been proved (Avhadief & Maklakov 1995) for smooth airfoils of finite curvature. We
will extend the proof to the case when the curvature tends to infinity near the trailing
edge. The incentive for doing this is that when the velocity distribution over the
airfoil surface is prescribed and the airfoil shape is being sought as the solution to
the inverse boundary-value problem, the resulting shape often has infinite curvature
near the cusp. (An airfoil with a favourable pressure gradient near the trailing edge
must have a cusped trailing edge to avoid stagnation.) Let us consider, for example, a
symmetric airfoil at zero incidence and assume that the velocity on the airfoil surface
is constant in the vicinity of the cusp. Therefore, the angle between the airfoil surface
and the trailing streamline at the trailing edge in the hodograph plane is 90◦ while it
is 180◦ in the physical space. This immediately leads to infinite curvature.

The Stepanov theorem can be proved by reductio ad absurdum. We assume that the
pressure gradient is favourable everywhere on the airfoil surface and prove that, in
this case, the airfoil contour has self-intersections.

Let w(z) be the complex potential of the flow. The complex velocity dw/dz = Vp(z)
is analytic in the region exterior to the airfoil. The Riemann mapping theorem
guarantees that such a domain can be thought of as the region exterior to the unit
circle in a complex µ-plane, µ = ρ exp(iϕ), mapped to the z-plane by an analytic
function z = z(µ) so that limµ→∞ z = ∞. It follows that the complex velocity Vp is
an analytic function of µ as well, i.e. Vp = Vp(µ). Without loss of generality, we may
assume that the trailing edge is at z = 0, and that it corresponds to µ = 1 in the
µ-plane, with the velocity at the trailing edge directed along the x-axis.

Let Vp = |Vp| exp(−iω), with ω denoting the flow velocity angle on the physical
z-plane. A favourable pressure gradient everywhere on the surface, from the forward
stagnation point to the trailing edge, implies that the flow velocity reaches its
maximum value at the trailing edge. Since, according to the maximum modulus
principle, |Vp| attains its maximum over the entire flow domain at a point of the unit
circle, this point is at the trailing edge µ = 1.

Therefore, at this point, according to the Hopf boundary-point lemma, see Courant
(1962),

∂ |Vp|
∂ρ

< 0. (2.1)

Here, the derivative at µ = 1 can be understood as the upper bound of ∂ |Vp|/∂ρ
as µ → 1. From the Cauchy–Riemann conditions applied to log Vp(µ) as a function
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Expected Obtained

Figure 1. Airfoil with a favourable pressure gradient on the entire surface.

of log µ

∂ω

∂ϕ
= −ρ

∂ log |Vp|
∂ρ

. (2.2)

From this and (2.1) it follows that as µ → 1, the lower bound of ∂ω/∂ϕ is strictly
positive. Therefore, there exists a constant C > 0 such that on the unit circle (ρ = 1)

ω(ϕ) > Cϕ, ϕ > 0; ω(ϕ) < Cϕ, ϕ < 0 (2.3)

in a certain vicinity of the point µ = 1.
Near the cusp z = A(µ−1)2 + · · · with the real constant A > 0, so that on the airfoil

surface x = −Aϕ2 + · · · . When a point in the µ-plane moves anticlockwise around the
unit circle the corresponding point in the physical plane moves anticlockwise around
the airfoil, with the airfoil being to the left of the direction of the point motion. We will
refer to points with ϕ < 0 (>0) in the vicinity of the trailing edge as the lower (upper)
airfoil surface. This convention corresponds to an approximately horizontal airfoil
with the trailing edge at the right-hand end of it. Then ϕ = ±

√
−x/A + · · · at the lower

(−) and upper (+) surfaces. Let the lower (upper) surface be y = Y−(x) (y = Y+(x))
near the trailing edge. At the airfoil surface dy/dx = tan ω. Therefore

Y±(x) =

∫ x

0

tan ω(ϕ) dx =

∫ x

0

tan ω(±
√

−x/A + · · ·) dx.

Hence

Y+(x) − Y−(x) =

∫ x

0

[
tan ω(

√
−x/A + · · ·) − tan ω(−

√
−x/A + · · ·)

]
dx

and, using (2.3) and recalling that x < 0,

Y+(x) − Y−(x) < 2

∫ x

0

tan C
√

−x/A dx < 0.

That is, we have showed that if the maximum velocity is attained at the trailing
edge, the upper airfoil surface is below the lower airfoil surface, see figure 1. This
proves the Stepanov theorem.

It should be noted that this proof has to be modified if the maximum is attained
at more than one point, as is the case if, when solving the inverse boundary-value
problem, constant |Vp| is prescribed on a finite section of the airfoil in the vicinity of
the trailing edge. This special case can be treated by using the hodograph plane to
obtain and analyse a local solution near the trailing edge.

Let us now consider how the Stepanov theorem was proved in Avhadief & Maklakov
(1995). Denoting the profile arclength s and assuming the airfoil curvature radius
R �= 0, one obtains (

∂ω

∂ϕ

)
ϕ=0

=
∂ω

∂s

ds

dϕ
=

1

R

∣∣∣∣ dz

dµ

∣∣∣∣ = 0 (2.4)
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at the trailing edge. It therefore follows from (2.2) that ∂ |Vp|/∂ρ exists and is equal
to zero at µ = 1 thus violating the Hopf boundary-point lemma. The proof given in
the present paper is, therefore, just a simple enhancement obtained using the stronger
formulation of the Hopf lemma which is applicable even when ∂ |Vp|/∂ρ does not
exist at µ = 1 in the ordinary sense.

2.2. Necessary condition for a favourable pressure gradient

As the proof given in the preceding section indicates, allowing the airfoil or the flow
in question to exhibit irregularity at the trailing edge does not ensure any advantages
with respect to the pressure gradient being favourable. For this reason, and also since
this assumption is sufficient for our further considerations, we assume now that |Vp| is
a smooth function of ϕ with at least two derivatives on the unit circle in the µ-plane.
The Stepanov theorem can then be reformulated briefly by stating that, according to
the Hopf lemma, the critical points pertinent to modular surfaces of analytic functions
cannot be elliptic, while, absurde, it would be the case if max|Vp| were attained at
the trailing edge µ = 1. Nevertheless, a hyperbolic critical point is not forbidden
at µ = 1. In this case, the modular surface |Vp| has a saddle at µ = 1, with a local
maximum with respect to the profile points (∂ |Vp|/∂ϕ = 0) and a local minimum with
respect to the exterior points (∂ |Vp|/∂ρ = 0). Under the Stepanov theorem assumption
that the flow is potential exterior to the airfoil, such an occurrence is of little help in
gaining a favourable pressure gradient everywhere since, according to the maximum
modulus principle, the absolute maximum should be reached at another point on the
profile contour. However, in principle and de facto, as will be shown in what follows,
a trailing-edge hyperbolic critical point can ensure a favourable pressure gradient
everywhere on an airfoil if there is some vorticity inside the flow field, for instance
in the form of a point vortex. In this case, the maximum modulus principle does not
apply and the velocity can increase monotonically from the stagnation point to a
cusped trailing edge where it reaches the maximum value along the boundary values
without violating the Stepanov theorem.

In this case (
∂ |Vp|
∂ϕ

)
trailing edge

= 0, (2.5)

at the trailing edge, providing the necessary condition for the pressure gradient to be
favourable everywhere on the profile contour and without any inconsistency with (2.4).

The parametric representation |Vp| = |Vp|(ϕ) of the flow velocity on the profile, as
a function of the transformed unit circle angle, provides a simple tool to reveal the
flow behaviour in the vicinity of a cusped trailing edge. The derivative of the flow
velocity, with respect to the profile arclength s, is given by

d|Vp|
ds

=
∂ |Vp|/∂ϕ

|dz/dµ| . (2.6)

At a cusped trailing edge, dz/dµ = 0 and Vp �= 0. If a local maximum is reached,
(2.6) is indeterminate, and its limiting value is

d|Vp|
ds

= lim
ϕ→0

∂ |Vp|/∂ϕ

|dz/dµ| =

(
∂2|Vp|/∂ϕ2

(∂/∂ϕ) |dz/dµ|

)
ϕ=0

.
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Figure 2. Vortex-trapping airfoil and its idealized model.

The denominator of this limit value can be different from zero. Assuming that the
mapping z(µ) can be expanded about the trailing edge as

z =

(
1 − 1

µ

)2 ∞∑
n=0

cn(µ − 1)n (c0 �= 0),

the limit of ∂ |dz/dµ|/∂ϕ is

lim
ϕ→0±

∂

∂ϕ

∣∣∣∣ dz

dµ

∣∣∣∣ = ±2|c0|.

Thus, the flow has opposite finite gradients on both sides if ∂2|Vp|/∂ϕ2 �= 0 or zero
gradient if ∂2|Vp|/∂ϕ2 = 0.

If a local velocity maximum is not reached, ∂ |Vp|/∂ϕ has the same sign on the
two cusp sides. It follows that the pressure gradient is favourable on one side and
unfavourable on the other side, and it tends to infinity as the cusp is approached.

This has certain implications for airfoil design methods. One could start with a
certain airfoil and vary its shape in some kind of optimization procedure, with the
maximum value of the adverse pressure gradient as the functional which is to be
minimized. However, such an approach is not feasible since this functional is indefinite.

3. Vortex-trapping airfoils
The idea that the presence of a vortex region near an airfoil can improve the

airfoil performance is quite old. The so-called vortex-trapping airfoil is illustrated in
figure 2 together with its highly idealized point-vortex model. Ideally, the pressure
should decrease along the entire lower surface, and it also should decrease from
the stagnation point to the cusp at the start of the cavity; then it may increase
along the separating streamline, and, after reattachment, only decrease along the wall
toward the trailing edge and back along the cavity wall toward the separation point.

The idealized model streamline pattern shown in figure 2 is due to a vortex with
clockwise circulation and a free stream in the direction of the positive real axis.
The marked bold streamline arc behaves as a zero thickness airfoil with two cusps
at its ends when considered as solid. The flow accelerates monotonically from the
stagnation points to the cusps on both sides.
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However, the vortex in figure 2 is not in equilibrium, therefore such a flow is not a
valid example of a physically possible steady flow with a favourable pressure gradient,
even from a very ideal point of view. The example is nevertheless useful since it shows
that an airfoil that is capable of trapping a standing vortex could have a favourable
pressure gradient without having self-intersections.

Since the vortex is not in equilibrium it exerts a force on the fluid. This is
a substantial point since, as a consequence of the theorem proved in Bunyakin
et al. (1998), if the vortex is in equilibrium then either there are more than one
pressure maximum and one pressure minimum on the streamline encircling the
vortex, or the vortical region has a very complex shape. It was shown in Bunyakin
et al. (1998) that if the pressure on the boundary of the closed streamline region has
only one minimum and one maximum, as implied by our idealized picture, then the
total pressure force exerted at this boundary is non-zero. (The force exerted by the
vortex on the fluid in figure 2 is of course exactly equal to the pressure force exerted
on the eddy boundary, so that the centre of mass of fluid in the eddy remains at rest.)
This theorem is proved for quite a wide class of eddy shapes: this class consists of all
those shapes where a circle can be drawn through any two points on its boundary
without other intersections with this boundary. This, naturally, includes any convex
shape.

Note now that the proof in Bunyakin et al. (1998) cannot be extended to arbitrary
shapes. It is in fact possible to construct an example of an S-shaped region and a
pressure distribution with only one minimum and one maximum on it so that both
the total pressure force and the total moment of the pressure force are zero. It is of
course quite probable that such a pressure distribution could never occur in a fluid
flow. It might also be possible to have an eddy of a simple shape but such that these
inevitable additional pressure minimum and maximum are located on the separating
streamline, so that the pressure gradient at the rigid walls is favourable everywhere.
However, no examples of such a flow are as yet known.

Although, in real flows with closed streamlines, the vorticity is distributed inside
the eddy, a potential flow with a point vortex obviously captures both difficulties
associated to the Stepanov theorem and the theorem in Bunyakin et al. (1998) and
is much easier to calculate. For this reason, point-vortex models are in principle
suitable for studying the feasibility of various approaches to the design of airfoils
with a favourable pressure gradient. Due to the strong limitations imposed by these
theorems, it is clear that the trial-and-error approach is not very likely to succeed.
This is why an attempt was made to solve the inverse boundary-value problem for
vortex-trapping airfoils by Galletti, Iollo & Zannetti (2002), who gave an analytical
method to design vortex-trapping airfoils. Their method is inspired by the Elizarov
et al. (1997) method to solve inverse problems for simple airfoils. It makes it possible
to find the shape that a vortex-trapping airfoil should have to obtain a velocity
distribution which is as close, in a certain sense, as possible to the distribution
prescribed along its contour.

A solution to the problem of finding an airfoil with a favourable pressure gradient
could be attempted with Galletti et al.’s (2002) method by prescribing an appropriate
velocity distribution and then solving the pertinent inverse problem. The main
difficulty is that airfoil inverse problems are usually ill-posed and solvability condition
have to be enforced (Lighthill 1945; Elizarov et al. 1997). Galletti et al. (2002) have
shown that the inverse vortex-trapping airfoil problem is well-posed when the design
velocity satisfies five integral constraints, of which three are equivalent to the three
(Lighthill 1945) constraints for consistency with velocity at infinity and airfoil closure,
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Figure 3. The streamline pattern for a vortex pair superimposed on a uniform flow.

while another two constraints are needed to guarantee vortex equilibrium. As in
Elizarov et al. (1997), once an arbitrary design velocity distribution is chosen, the
problem is solved for a modified distribution which, according to a variational
criterion, is the closest one that satisfies the constraints. Our attempts to solve
the problem of a favourable-pressure-gradient airfoil by these means failed. The
main reason for this failure, besides the difficulty of avoiding airfoil self-intersection,
appeared to be that the necessary condition (2.5) has to be exactly satisfied; the
variational closest concept is of little help for this purpose. Because of the severe
limitation on the eddy shape, as imposed by the theorem proved in Bunyakin
et al. (1998), a favourable-pressure-gradient airfoil with a single trapped vortex could
be impossible.

4. Lifting body with two trapped vortices
4.1. Vortex pair

A consistent example of a favourable-pressure-gradient body is given by the vortex-
pair flow. The streamline pattern for a vortex pair superimposed on an uniform
flow, directed in the sense of the negative imaginary axes, is shown in figure 3. It is
characterized by a closed streamline that separates the fluid entrained by the vortices
from the rest of the fluid. A properly selected segment of this separatrix, as shown
in bold in figure 3, can act as a doubly cusped zero-thickness profile that traps a
vortex pair and has a favourable pressure gradient everywhere on the profile. The
resulting trailing-edge velocity gradients can be finite or zero, depending on the choice
of segment extrema, in agreement with the analysis in § 2.2. Notice that, in this case,
the vortices are in equilibrium.
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This example proves the existence of a steady flow past a body with a favourable
pressure gradient everywhere on the body surface, but it is of limited interest since
such a body has no thickness and does not produce lift. The question now is: does
a thick lifting body with a pressure gradient favourable everywhere on its surface
exist? We answer the question positively by providing an example of a body with
such properties.

The process we follow is based on conformal mapping. In brief, a thick profile
is generated by modifying an arc of the vortex pair separatrix. The profile is then
mapped from the physical z-plane onto the unit circle in the µ-plane, where the
complex potential is determined. Free flow parameters exist that are adjusted by
means of a conjugate gradient descent method in order to satisfy the necessary
conditions for flows with a favourable pressure gradient. The fulfilment of the goal
of an everywhere-favourable pressure gradient is verified a posteriori.

4.2. Profile generation and mapping

The complex potential pertinent to the vortex-pair flow of figure 3 is:

wv = iz +
κ

2πi
log

(
z − x0

z + x0

)
, (4.1)

where, at infinity, the flow has unit velocity and is in the same direction as the
negative imaginary axis. The two opposite vortices, whose circulations are κ and −κ ,
are located on the real axis at x = x0 and x = −x0. The vortices do not move when
κ = −4πx0. The separatrix equation is

S(x, y) = Im(wv) = 0. (4.2)

Let xL denote the intersection of the separatrix and the real axis. The ratio η = xL/x0

is therefore the solution of equation

η + 2 log

(
η − 1

η + 1

)
= 0,

that is, η = 2.08725. We assumed xL = 1, obtaining x0 = 1/η, κ = −4π/η.
To generate the profile, a separatrix arc zs = xs + iys is first selected by choosing

its extrema zT1
, zT2

. The arc is then computed as a set of points that are determined
by solving the polar representation of equation (4.2) using a trial-and-error process.
An example is shown in figure 4 for the choice of arg(zT1

) = 5◦, arg(zT2
) = 180◦ − 5◦.

The inner side zv = xv + iyv of the profile is obtained by deforming this separatrix
arc without altering its extrema zT1

, zT2
. The deformation is carried out according to

the equations

xv = xs, yv = ys + σ sin

(
2π

xs − xT2

xT1
− xT2

)
,

where σ is the deformation maximum amplitude. The altered arc corresponding to
σ = 0.06 is superimposed onto the original arc in figure 4.

The outer profile contour zd = xd +iyd is obtained by adding a thickness distribution
to the inner contour according to the law

xd = xv, yd = yv + ε exp

(
χ

xv − xT1

− 1 − χ

xv − xT2

)
, (4.3)

where ε > 0 and 0 < χ < 1. The thickness distribution (4.3) is such that the profile
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1.0

y

0.5

–1.0 –0.5 1.00.5
x

Figure 4. Separatrix arc (arg(zT1
) = 5◦, arg(zT2

) = 180◦ − 5◦) and modified arc (σ = 0.06).

Figure 5. Profile and streamline pattern (ε = 0.5, χ = 0.5).

is cusped at the trailing edges zT1
, zT2

, as represented in figure 5 for ε = 0.5, χ = 0.5.
These deformations can be replaced with any similar deformations. The lift obtained
using this specific form of deformation is not large, but optimizing the deformation
for achieving maximum lift is far beyond the scope of the present paper.
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–0.5

Figure 6. Quasi-circle in the λ-plane.

A mapping chain is used to map the z-plane profile onto the µ-plane unit circle.
The transformation

z1 = 4
z − zT2

zT1
− zT2

− 2 (4.4)

rescales the profiles bringing trailing edges into the real axes (zT1
→ 2, zT2

→ −2). The
inverse Joukowski mapping

λ =
z1 +

√
z2 − 4

2
(4.5)

transforms the profile into a quasi-circle in the λ-plane, as shown in figure 6.
The Theodorsen–Garrick transformation

λ = µ exp

∞∑
j=0

(aj + ibj )µ
j (4.6)

maps the domain external to the unit circle in the µ-plane into the domain external
to the quasi-circle in the λ-plane.

The coefficients aj , bj in (4.6) are determined following the procedure described in
detail by Ives (1976). Briefly, since the quasi-circle is a smooth line, the series can
be truncated at a suitably large j = N (in our computation we used N = 400), the
aj , bj terms are then computed by a trial and error process. Let λ = r exp(iϑ) and
µ = ρ exp(iϕ); the process is based on enforcing the correspondence between the
λ-plane quasi-circle r = r(ϑ) and the µ-plane unit circle ρ = 1. A cubic spline is
used to obtain a continuous representation of the quasi-circle, which is defined on a
discrete set of points by the previous transformations. The unit circle of the λ-plane is
divided into 2N intervals of �ϕ = 2π/(2N ). The relationships between the 2N circle
and quasi-circle points are then obtained by taking the real and imaginary part of
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the logarithm of (4.6) for ρ = 1:

log r(ϑk) =

N∑
j=0

[aj cos(jk�ϕ) + bj sin(jk�ϕ)], j = 0, . . . , N; k = 0, . . . 2N − 1,

(4.7)

ϑk = k�ϕ +

N∑
j=0

[bj cos(jk�ϕ) − aj sin(jk�ϕ)], j = 0, . . . , N; k = 0, . . . 2N − 1.

(4.8)

The iterative process is started by assuming ϑk = ϕ0 + k �ϕ, where ϕ0 determines
a rigid rotation of the µ-plane and can be chosen freely. Equation (4.7) then allows
the computation of the 2N unknowns: aj (j = 0, . . . N) and bj (j = 1, . . . N − 1).
Coefficients b0 and bN are not among the unknowns of equation (4.7). In fact, b0

is determined by (4.8) for k = 0: b0 = ϕ0 −
∑N

j=1 bj , bN is free and is set to zero
to close the problem. Equation (4.8) can now yield a new set of ϑk values. The
process is repeated until convergence is reached. The two steps of each cycle, i.e. aj ,
bj computation and ϑk evaluation, are efficiently accomplished by means of the FFT
algorithm.

The mapping from the µ-plane to the z-plane, z = zf (µ), is the chain formed
by (4.6) and the inverse of functions (4.5) and (4.4), that is,

z = zf (µ) = z(z1(λ(µ))) (4.9)

with

z1(λ) = λ +
1

λ
, z(z1) =

z1 + 2(zT1
+ zT2

)

4
.

4.3. Complex potential

The complex potential w(µ) is obtained on the µ-plane by superimposing a uniform
flow, two free vortices external to the unit circle, their reflected images inside the
circle, and a vortex located at the circle centre (see figure 7), that is,

w = Q∞µ +
Q∗

∞
µ

+
κ1

2πi
log

(
µ − µ1

µ − µ̄1

)
+

κ2

2πi
log

(
µ − µ2

µ − µ̄2

)
+

γ

2πi
log(µ), (4.10)

where an asterisk denotes the complex conjugate; µ̄1,2 = 1/µ∗
1,2; κ1, κ2, µ1, µ2, are

free vortex circulations and locations, respectively; γ is the circulation of the centre
vortex, i.e. the total circulation; Q∞ is the asymptotic complex velocity in the µ-plane:

Q∞ = ie−iα lim
µ→∞

dz

dµ
.

Since limµ→∞ zf (µ) = ∞, the corresponding asymptotic velocity on the z-plane has a
unit modulus and α is its incidence with respect to the negative imaginary direction.

Two Kutta–Joukowski conditions have to be satisfied at the circle points µT1
, µT2

which correspond to trailing edges zT1
, zT2

, that is,

(
dw

dµ

)
µT1

= 0,

(
dw

dµ

)
µT2

= 0. (4.11)
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Moreover, the free vortices located at z1 = zf (µ1), z2 = zf (µ2), have to be in
equilibrium. According to the Routh rule (see Routh 1881; Clements 1973), the vortex
velocity can be expressed as (j = 1, 2 here and below to the end of the subsection):

ż∗
j =

{[
µ̇∗

j − κj

4πi

d

dµ

(
log

dz

dµ

)]
dµ

dz

}
µj

, (4.12)

where µ̇∗
j is the velocity that is relevant to the free vortices on the µ-plane:

µ̇∗
j = Q∞ − Q∗

∞
µ2

j

− κj

2πi

1

µj − µ̄j

+
κl

2πi

(
1

µj − µl

− 1

µj − µ̄l

)
+

γ

2πi

1

µj

(j =1, 2; l �= j ).

The vortex equilibrium conditions are therefore

µ̇∗
j =

κj

4πi

d

dµ

(
log

dz

dµ

)
µj

. (4.13)

The flow velocity at the trailing edges Vp(µTj
) is

Vp(µTj
) = lim

µ→µTj

dw/dµ

dz/dµ
=

(
d2w/dµ2

d2z/dµ2

)
µTj
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and the derivative of the flow velocity ∂ |Vp|/∂ϕ can be deduced from the Cauchy–
Riemann conditions:(

∂ log |Vp|
∂ϕ

)
µTj

= − lim
µ→µTj

Im

[
µ

d

dµ

(
log

dw/dµ

dz/dµ

)]

= −Im

(
µ

d3w/dµ3 − Vpd3z/dµ3

2 d2w/dµ2

)
µTj

. (4.14)

4.4. Flow configuration with a favourable pressure gradient throughout

The flow depends on α, γ, κ1, κ2, µ1 = ξ1 + i η1, µ2 = ξ2 + i η2, that is, on eight real
parameters, and has to satisfy equations (4.11) and (4.13), which are equivalent to six
real equations; as a consequence the flow has two degrees of freedom.

We chose (α, γ ) as the parameters that define the flow configuration space. Free
vortex circulations κ1, κ2 can be expressed in closed form as explicit functions of
the other parameters by using the Kutta–Joukowski conditions (4.11) and thus be
eliminated from (4.13) which, given (α, γ ) values, are solved numerically providing
free vortex equilibrium locations µ1 = ξ1 + i η1, µ2 = ξ2 + i η2. A conjugate gradient
method (Polak 1971) has been adopted to obtain favourable-pressure-gradient flow
configurations (α, γ ) that fulfil the two necessary conditions (2.5). The fact that the
pressure gradient is favourable everywhere on the body surface has been verified a
posteriori. We considered the function

F = 1
2

(
L2

1 + L2
2

)
(4.15)

with

Lj =

(
1

|Vp|
∂ |Vp|
∂ϕ

)
µTj

(j = 1, 2) (4.16)

given by (4.14). The analytically computed gradient (∂F/∂α, ∂F/∂γ ) provides the
path to be followed in the (α, γ ) space to find minimum F. We expect F = 0 at the
minimum.

4.4.1. Gradient evaluation

According to (4.10), (4.14), (4.15), and (4.16), once κ1, κ1 are eliminated as mentioned,
the functional F depends on (α, γ ) directly and, through vortex equilibrium locations
ξj (α, γ ), ηj (α, γ ), indirectly. The functional gradient is therefore

∂F
∂α

= F∂α +

2∑
l=1

(
F∂ξl

∂ξl

∂α
+ F∂ηl

∂ηl

∂α

)
,

∂F
∂γ

= F∂γ +

2∑
l=1

(
F∂ξl

∂ξl

∂γ
+ F∂ηl

∂ηl

∂γ

)
.

Differentiation of the vortex equilibrium conditions ẋj − iẏj = ż∗
j = 0, with ż∗

j

expressed using (4.12), yields the linear systems

2∑
l=1

(
∂ẋj

∂ξl

∂ξl

∂α
+

∂ẋj

∂ηl

∂ηl

∂α

)
= −ẋj∂α

,

2∑
l=1

(
∂ẏj

∂ξl

∂ξl

∂α
+

∂ẏj

∂ηl

∂ηl

∂α

)
= −ẏj∂α

(j = 1, 2)

2∑
l=1

(
∂ẋj

∂ξl

∂ξl

∂γ
+

∂ẋj

∂ηl

∂ηl

∂γ

)
= −ẋj∂γ

,

2∑
l=1

(
∂ẏj

∂ξl

∂ξl

∂γ
+

∂ẏj

∂ηl

∂ηl

∂γ

)
= −ẏj∂γ

(j = 1, 2)

solution of which provides the derivatives ∂ξj/∂α, ∂ηj/∂α, ∂ξj/∂γ , ∂ηj/∂γ .
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4.5. Numerical examples

The computations presented hereafter, including symbolic manipulations and
differentiations, have been carried out automatically using the Mathematica package.

First, the general flow past the body described in § 4.2 (see figure 5) is presented,
without the requirement that the pressure gradient be everywhere favourable. Then,
for the same body, a flow configuration with everywhere-favourable pressure gradient
is sought and the outcome is presented. In § 4.6 an assessment of the overall com-
putational accuracy is presented.

We first consider the flow configuration that corresponds to zero circulation and
zero incidence, γ = 0, α = 0. The value of functional (4.15) is F = 0.00356193 with
L1 = 0.0494094 and L2 = 0.0684292. The necessary condition (2.5) for a favourable
pressure gradient on the profile contour is violated at both trailing edges and,
according to (2.6), the flow velocity |Vp| has an infinite gradient which implies
acceleration on one side and deceleration on the other side of each trailing edge, as
discussed in § 2.2.

The velocity distribution on the profile sides is plotted in figure 8 versus the
arclength

s =

∫ ϕ

ϕµT1

|dz/dµ|dϕ′.

At a first glance it seems favourable everywhere, but on looking closer it can be seen
that due to infinite gradients the maximum values are not attained at the trailing
edges. A closer look at the velocity distribution on the lower and upper sides of the
trailing edges plotted in figure 9 shows that the local velocity maxima are not attained
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at the edges. If the viscosity were taken into account, boundary layer separation would
be inevitable due to infinite pressure gradient. Once triggered, separation can then
spread over a large part of the airfoil.

The descent method described in § 4.4 was used to determine the flow configuration
(γ, α) that minimizes the functional F. The F descent history is plotted versus
iteration steps in figure 10. A fixed descent step is performed, i.e. no line search
is performed in the descent direction. The descent step is adapted by decreasing
its value according to the reduction in F. The slope change in the history is due
to the change in the descent step. As shown in figure 10, the computation was
terminated when the functional F decreased from O(10−3) to O(10−9) with trailing-
edge derivatives ∂ |Vp|/∂ϕ decreasing from O(10−2) to O(10−6). The functional gradient
is O(10−5). The circulation γ and incidence α histories are drawn in figure 11; they
reach the values γ = 0.19446, α = 1.7383◦, to which µ1 = 1.49125 exp(i 5.03613),
µ2 = 1.54888 exp(−i 1.87583), κ1 = −5.92435, κ2 = 6.02955 correspond. By virtue of
the Joukowski theorem the circulation γ also gives the lift.
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As can be seen in figure 10, functional F could be driven to further smaller values,
but the goal of everywhere accelerating flow has already been numerically achieved.
The velocity distribution on the profile’s upper and lower sides is plotted in figure 12.
It is quite similar to that of figure 8, but a comparison of the trailing-edge close-ups,
shown in figure 13, with those of figure 9, confirm the substantial achievement of the
goal. The analysis of a potential flow past a cusp presented in § 2.2 is confirmed, since
the velocity distribution has infinite gradients when condition (2.5) is not satisfied,
while it tends to have finite discontinuous gradients, with opposite values, when the
trailing-edge maximum velocity is approached.

4.6. Validation and accuracy

The main result of the present paper is of a qualitative nature: it can be asserted that
a lifting body of non-zero volume exists with a favourable pressure gradient over its
entire surface if two trapped point vortices are present in the flow. This qualitative
conclusion is however based on a numerical result. Hence, two questions should be
addressed, namely the validity of our code and the accuracy of the result.

The code was validated by calculating the same flow using a quite different method:
the vortex-panel code used in Bunyakin et al. (1998) was modified to incorporate two
point vortices with known positions. The vortex positions were then taken from the
present calculations, and the velocity distribution on the body surface obtained with
the modified code was compared with results obtained using the approach described
here. The velocity at the vortex positions (which should be zero) was also calculated.
The agreement was quite satisfactory.

Regarding the accuracy of the specific results presented here, we can say that the
described flow computations are almost fully analytical, with the exceptions of the
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Theodorsen–Garrick mapping which involves the use of a cubic spline, as described
in § 4.2. Nevertheless, a test has been performed to check the accuracy. The flow past
an undeformed separatrix arc of a vortex pair flow can be assumed as a benchmark
of the process based on conformal mapping, since the configuration corresponding to
γ = 0, α = 0 can also be computed directly from (4.1).

The undeformed separatrix arc at the basis of the above examples, shown in figure 4,
has been selected for this test. The discrete representation of the arc, as required by
the conformal mapping process, was based on 800 points, as in the above examples.
The difference ‖Vp|(ϕ) − |Vth|(ϕ)| is plotted in figure 14. According to (4.1) and (4.9),
|Vth|(ϕ) is given by

|Vth |(ϕ) =

∣∣∣∣i + κ

2πi

(
1

z − x0

− 1

z + x0

)∣∣∣∣
z=zf [exp(iϕ)]

The errors of the free vortex intensities are O(10−7) and the errors of equilibrium
locations are O(10−8). For γ = 0, α = 0 the flow configuration is always of a
favourable pressure type, functional F in (4.15) should be zero, and the computed
value is O(10−8).

These checks show that the obtained result is sufficiently reliable.

5. Discussion
It can seem that the problem of flows with trapped vortices is not realistic. Trapped

vortices have however already been successfully used to prevent separation from
the surface for an experimental aircraft EKIP, see further references in Bunyakin
et al. (1998). It is therefore important to discuss the relationship between the simplified
model of the present paper and realistic flows of the same type.

First, there are no point vortices in a real flow. Instead, the vorticity is distributed
over the eddy. Point vortices, however, can be considered as an approximation for
small regions of distributed vorticity. Hence, in view of the result of the present paper,
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it is natural to expect that there are bodies with a favourable pressure gradient in the
case of two distributed trapped vortices.

Second, a real flow at a high Reynolds number is turbulent. As was pointed out by
Wu & Wu (1992), turbulence itself does not interfere with the idea of a trapped vortex.
Boundary layers and mixing layers at the eddy boundary can be turbulent without a
large increase in drag and decrease in lift, provided that the large-scale eddies remain
attached to the body. Turbulence will nonetheless affect the characteristics of such
eddies. However, theoretical analysis of turbulent flows with trapped vortices should be
preceded by experiments and numerical calculations aimed at finding the appropriate
turbulence model.

Third, such flows, even if modelled with point vortices, are generally not stable
with respect to large-scale vortex shedding. If the point vortices calculated in the
present paper were displaced even slightly, they would move and, quite likely, would
eventually leave the vicinity of the body, and the flow in the vicinity of the body
would become purely potential, with infinite velocities at the sharp edges. In a more
realistic model and in reality the new vorticity would then be shed from the body,
and the entire process would repeat itself.

Fourth, in the present paper the vortex circulations and the total circulation were
adjusted so as to satisfy the Kutta–Joukowski conditions at the sharp edges and
the necessary condition for a favourable pressure gradient. In reality, the amount
of vorticity in the eddy and the total circulation are determined by viscous effects.
As is known, these effects do in fact lead to the Kutta–Joukowski conditions being
satisfied. However, the necessary condition for a favourable pressure gradient, that
is (2.5), cannot be expected to be satisfied automatically due to the action of viscosity.
With viscosity taken into account one would have to add an additional parameter
for the body shape and adjust this parameter to satisfy the necessary condition for a
favourable pressure gradient.

Hence, as the possibility of designing a body with a favourable pressure gradient
has been demonstrated in principle, further theoretical studies may involve solving
the following two problems.

First, the major question concerns the control of the large-scale instability. Recent
successes in active flow control would seem to offer some hope in this respect (see,
for example, Min & Choi 1999).

Second, let us now assume that such active control is implemented and, for sim-
plicity, that the flow is laminar and steady. Then a more realistic model of the flow
should take viscosity into account. The appropriate tool for this is the high-Reynolds-
number-asymptotic method. Asymptotic solutions have so far been obtained for
flows with a single trapped vortex (Bunyakin et al. 1998) and for a symmetric
flow past a bluff body (see Chernyshenko 1998). However, the flow with two vortices
poses, somewhat unexpectedly, a new and challenging problem. In the high-Reynolds-
number limit, the flow with two trapped vortices should normally correspond to the
Batchelor model. This means that the vorticity should be constant (but perhaps
different) inside each eddy, and that the tangential velocity may be discontinuous
across the eddy boundaries. For a given body shape and in a non-symmetrical case,
as is necessary for a lifting body, such an inviscid flow could be expected to be
uniquely determined by five parameters, once the incidence is fixed, for example by
two eddy vorticities, two positions of separation points on the body surface, and the
total circulation. Existing theories provide certain viscous mechanisms for eliminating
the non-uniqueness of the inviscid flow, that is, a certain condition has to be satisfied
for the solution in the cyclic boundary layer surrounding the eddy to exist, and
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another condition is provided by the local analysis of the flow in the vicinity of
the separation point. For the case when there is a sharp corner on the body, this
local condition is equivalent to the Kutta–Joukowski condition. Further details can
be found in the previously mentioned papers, and we also note that here we have
ignored the (very difficult) problem of secondary separation, that is the separation
from inside the cavity, addressed in Bunyakin et al. (1998). These mechanisms are
sufficient to determine the unique solution in the case of a symmetrical flow past a
bluff body or a flow with a single trapped vortex. In the configuration in question,
they are not sufficient. Here there are two cyclic layers and two separation points
which allow one to determine four parameters, but the inviscid flow depends on five
parameters, and a one-parameter set of solutions exists as in § 4.4.

We are therefore faced with an interesting problem which has not attracted much
attention so far. It would be highly desirable to understand at least the physical
mechanism that determines the fifth parameter, and the laminar steady high-Reynolds-
number asymptotic approach seems to be the best tool for revealing this mechanism.
One feature of the streamline pattern in figure 5 may suggest a possible mechanism.
Figure 5 shows that one of the closed streamline regions (left) is not in contact
with the wall. It is separated from the wall by a narrow strip (coloured grey in the
figure) of fluid between two streamlines coming from and going to infinity. Such
a configuration presumably cannot be a limit of a viscous flow. Indeed, since all
the streamlines within that strip come from infinity, in the limiting flow vorticity
is zero inside this region. However, due to viscous diffusion, the vorticity from the
closed streamline region will slowly diffuse outside. Another way to see it is to apply
the maximum principle to the viscous vorticity equation and then take a limit of
zero viscosity. By the maximum principle vorticity inside a closed contour is always
between its maximum and minimum on the contour, and so it will be in the limit,
too. Taking this contour to be entirely inside the grey area in figure 5 proves that
the vorticity inside the closed streamline region surrounded by purely potential flow
should be zero. Therefore, viscous flow analysis can give an additional requirement on
the topology of the flow and this can provide the fifth necessary condition. However,
any final conclusions on such a difficult matter should be made only after much more
careful and extensive study.

The main result of the present paper is that in principle flows past lifting bodies
with a favourable pressure gradient on the entire body surface are possible, if two
trapped vortices are present. This result gives rise to new problems, in particular active
control of the flows with trapped vortices and a high-Reynolds number asymptotic
theory of separated flows past non-symmetric bodies.

The research collaboration that resulted in the present paper was in part supported
by the Royal Society grant under the European Science Exchange Programme.
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